Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster.

نویسندگان

  • Sonia Sen
  • Beate Hartmann
  • Heinrich Reichert
  • Veronica Rodrigues
چکیده

In Drosophila, the cephalic gap gene empty spiracles plays key roles in embryonic patterning of the peripheral and central nervous system. During postembryonic development, it is involved in the development of central olfactory circuitry in the antennal lobe of the adult. However, its possible role in the postembryonic development of peripheral olfactory sense organs has not been investigated. Here, we show that empty spiracles acts in a subset of precursors that generate the olfactory sense organs of the adult antenna. All empty spiracles-expressing precursor cells co-express the proneural gene amos and the early patterning gene lozenge. Moreover, the expression of empty spiracles in these precursor cells is dependent on both amos and lozenge. Functional analysis reveals two distinct roles of empty spiracles in the development of olfactory sense organs. Genetic interaction studies in a lozenge-sensitized background uncover a requirement of empty spiracles in the formation of trichoid and basiconic olfactory sensilla. MARCM-based clonal mutant analysis reveals an additional role during axonal targeting of olfactory sensory neurons to glomeruli within the antennal lobe. Our findings on empty spiracles action in olfactory sense organ development complement previous studies that demonstrate its requirement in olfactory interneurons and, taken together with studies on the murine homologs of empty spiracles, suggest that conserved molecular genetic programs might be responsible for the formation of both peripheral and central olfactory circuitry in insects and mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex.

We cloned two homeobox genes, Emx1 and Emx2, related to empty spiracles, a gene expressed in very anterior body regions during early Drosophila embryogenesis, and studied their expression in mouse embryos. Emx1 expression is detectable from day 9.5 of gestation whereas Emx2 appears to be already expressed in 8.5 day embryos. Both genes are expressed in the presumptive cerebral cortex and olfact...

متن کامل

Empty spiracles is required for the development of olfactory projection neuron circuitry in Drosophila.

In both insects and mammals, second-order olfactory neurons receive input from olfactory receptor neurons and relay olfactory input to higher brain centers. In Drosophila, the wiring specificity of these olfactory projection neurons (PNs) is predetermined by their lineage identity and birth order. However, the genetic programs that control this wiring specificity are not well understood. The ce...

متن کامل

Cell lineage-specific expression and function of the empty spiracles gene in adult brain development of Drosophila melanogaster.

The empty spiracles (ems) gene, encoding a homeodomain transcription factor, is a member of the cephalic gap gene family that acts in early specification of the anterior neuroectoderm in the embryonic brain of Drosophila. Here we show that ems is also expressed in the mature adult brain in the lineage-restricted clonal progeny of a single neuroblast in each brain hemisphere. These ems-expressin...

متن کامل

Drosophila grain encodes a GATA transcription factor required for cell rearrangement during morphogenesis.

The genetic mechanisms controlling organ shape are largely unknown. We show that the Drosophila grain gene is required during development for shaping the adult legs and the larval posterior spiracles. Mutant legs are short and wide rather than long and thin, while the spiracles are flat instead of dome-shaped. We demonstrate that grain encodes the GATAc transcription factor. Analysis of loss-of...

متن کامل

A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

BACKGROUND For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. METHODOLOGY/PRINCIPAL FINDIN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 21  شماره 

صفحات  -

تاریخ انتشار 2010